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Abstract. It was shown in our previous paper that each equation in a soliton hierarchy can
be factorized into two commutingx- and tn-finite-dimensional integrable Hamiltonian systems
(FDIHSs). The separation variables for these FDIHSs are constructed by using their Lax
representation. By means of the factorization and the separability of the FDIHSs we obtain
the Jacobi inversion problem, which is solvable in terms of Riemann theta functions, for soliton
equations. This provides a method analogous to the separation of variables for solving soliton
equations.

The separation of variables is one of the most universal methods of solving a completely
integrable Hamiltonian system. For classical integrable systems subject to an inverse
scattering transformation the standard construction of the action–angle variables using the
poles of the Baker–Akheizer function is equivalent to separation of variables [1]. The finite-
gap solutions of the soliton equation are constructed by means of the separation of variables
of the stationary soliton equation [2, 3].

It was shown in [4, 5] that each equation in a soliton hierarchy can be factorized into
two commutingx- andtn-finite-dimensional integrable Hamiltonian systems (FDIHSs). The
Lax representation for these FDIHSs can always be deduced from the adjoint representation
of the auxiliary linear problem for the soliton equations [6]. Recently, much interest has
developed in the study of the separation of variables for FDIHSs with a Lax representation
[1, 7–12]. By using the factorization of soliton equations and the separation of variables
for the FDIHSs we obtain the Jacobi inversion problem, which can be solved in terms
of Riemann theta functions, for soliton equations. This provides a method analogous to
the separation of variables for solving soliton equations. We illustrate the method by the
Jaulent–Miodek hierarchy.

The Jaulent–Miodek (JM) eigenvalue problem [13] reads

ψx = U(u, λ)ψ U(u, λ) =
(

0 1

−λ2+ λq + r 0

)
ψ =

(
ψ1

ψ2

)
u =

(
q

r

)
. (1)

The adjoint representation of (1) [3, 14] is

Vx = [U,V ] ≡ UV − VU. (2)

Set

V =
∞∑
m=0

Vmλ
−m Vm =

(
am bm

cm −am

)
. (3)
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Equation (2) yields

a0 = a1 = a2 = b0 = b1 = 0 b2 = −1 b3 = − 1
2q

c0 = 1 c1 = − 1
2q

(
bm+2

bm+1

)
= L

(
bm+1

bm

)
m = 1, 2, . . .

(4a)

am = − 1
2bm,x cm = am,x − bm+2+ qbm+1+ rbm m = 1, 2, . . .

L =
(
q − 1

2∂
−1
x qx r − 1

2∂
−1
x rx − 1

4∂
2
x

1 0

)
.

(4b)

Take

N(n)(u, λ) =
n∑

m=0

Vmλ
n−m +4n 4n (u, λ) =

(
0 0

λbn+1+ bn+2− qbn+1 0

)
(5)

and let

ψtn = N(n)(u, λ)ψ =
(

n∑
m=0

Vmλ
n−m +4n

)
ψ. (6)

Then the compatibility condition of (1) and (6) gives rise to the zero-curvature equation
Utn −N(n)

x − [U,N(n)] = 0, which leads to the JM hierarchy:

utn =
(
q

r

)
tn

= J
(
bn+2

bn+1

)
= J δHn+1

δu
(7)

J =
(

0 2∂x
2∂x −qx − 2q∂x

)
H1 = −q Hm = 1

m− 1
(2bm+2− qbm+1). (8)

Also we have
δλ

δu
= 1

2

(
λψ2

1

ψ2
1

)
. (9)

FurthermoreV satisfies the adjoint representation of (6) [3]:

Vtn = [N(n), V ] n = 1, 2, . . . . (10)

The x-constrained flow of (7) consists of replicas of (1) forN distinct λj and of a
restriction of the variational derivatives for the conserved quantitiesHk (for any fixedk)
andλj [4, 5]:

91x = 92 92x = −3291+ q391+ r91 (11a)

δHk+1

δu
+

N∑
j=1

δλj

δu
=
(
bk+2

bk+1

)
+ 1

2

(〈391, 91〉
〈91, 91〉

)
= 0. (11b)

Hereafter we denote the inner product inRN by 〈·, ·〉 and9i = (ψi1, · · · , ψiN)T, i = 1, 2,
3 = diag(λ1, · · · , λN). The system (11) is invariant under all flows of (7). By introducing
the Jacobi–Ostrogradsky coordinates, equations (11) can be transformed into ax-FDIHS.

The tn-constrained flow of (7) consists of replicas of (6) forN distinct λj and of
equation (7): (

ψ1j

ψ2j

)
tn = N(n)(u, λj )

(
ψ1j

ψ2j

)
j = 1, . . . , N (12a)

(
q

r

)
tn

= J
(
bn+2

bn+1

)
. (12b)
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Under equations (11) and the Jacobi–Ostrogradsky coordinates introduced above,
equations (12) can be transformed into atn-FDIHS. If (q, r,91, 92) satisfies these two
commutingx- and tn-FDIHS, then(q, r) solve the soliton equation (7), i.e. thex- and
tn-dependence of (7) are factorized by these twox- and tn-FDIHS. Therefore, some kind
of solution, such as a finite-gap solution, for equation (7) can be obtained through solving
the two commutingx- andtn-FDIHS obtained from (11) and (12). We shall find the Jacobi
inversion problem for thesex- and tn-FDIHS later, and combine them to give the Jacobi
inversion problem for equation (7), which is solvable in terms of the Riemann theta function.

The Lax representation for (11), which can be deduced from the adjoint
representation (2), is of the form [6]

M(k)
x = [U,M(k)] (13)

where

M(k) =
k∑

m=0

Vmλ
k−m +N0 N0 = 1

2

N∑
j=1

1

λ− λj

(
ψ1jψ2j −ψ2

1j

ψ2
2j −ψ1jψ2j

)
. (14)

The Lax representation for (12), which can be deduced from the adjoint representation (10),
is given by

M
(k)
tn = [N(n),M(k)] (15)

which shares the same Lax matrixM(k) with (13).
Whenk = 2, equation (11b) reads

q = 〈91, 91〉 r = 〈391, 91〉 − 3
4〈91, 91〉2 (16)

and equation (11a) becomes

91x = ∂H̃0

∂92
92x = −∂H̃0

∂91
(17a)

H̃0 = 1
2〈92, 92〉 + 1

2〈3291, 91〉 − 1
2〈91, 91〉〈391, 91〉 + 1

8〈91, 91〉3. (17b)

For n = 3, under (16) and (17) equation (12) becomes

91t3 =
∂H̃3

∂92
92t3 = −

∂H̃3

∂91
(18a)

H̃3 = − 1
2〈392, 92〉 − 1

2〈3391, 91〉 + 1
4〈91, 91〉〈3291, 91〉

− 1
8〈91, 91〉2〈391, 91〉 − 1

4〈91, 91〉〈92, 92〉 + 1
4〈391, 91〉2. (18b)

For n = 4, under (16) and (17) equation (12) becomes

91t4 =
∂H̃4

∂92
92t4 = −

∂H̃4

∂91
(19a)

H̃4 = − 1
2〈3292, 92〉 − 1

2〈3491, 91〉 + 1
4〈91, 91〉〈3391, 91〉

− 1
8〈91, 91〉2〈3291, 91〉 − 1

4〈91, 91〉〈392, 92〉

− 1
4〈391, 91〉〈92, 92〉 + 1

2〈91, 92〉〈391, 92〉

+ 1
4〈391, 91〉〈3291, 91〉. (19b)
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Then the soliton equation (7) withn = 3 (n = 4) is factorized by (17) and (18) (equations
(19)), i.e. if (91, 92) satisfies two commuting FDIHS (17) and (18) (equations (19))
simultaneously, then(q, r) given by (16) solve the soliton equation (7) withn = 3 (n = 4).

The Lax matrixM(2) for equations (17), (18) and (19) is of the form

M(2) =
(
A(λ) B(λ)

C(λ) −A(λ)
)

A(λ) = 1

2

N∑
j=1

ψ1jψ2j

λ− λj B(λ) = −1− 1

2

N∑
j=1

ψ2
1j

λ− λj (20a)

C(λ) = λ2− 1

2
〈91, 91〉λ− 1

2
〈391, 91〉 + 1

4
〈91, 91〉2+ 1

2

N∑
j=1

ψ2
2j

λ− λj . (20b)

We introduce the separation variablesuk, vk, k = 1, . . . , N by the zeros ofB(λ):

−B(λ) = 1+ 1

2

N∑
j=1

ψ2
1j

λ− λj =
R(λ)

K(λ)
(21a)

and

vk = A(uk) = 1

2

N∑
j=1

ψ1jψ2j

uk − λj k = 1, . . . , N (21b)

where

K(λ) ≡
N∏
j=1

(λ− λj ) =
N∑
i=0

αiλ
N−i R(λ) ≡

N∏
j=1

(λ− uj )

α0 = 1 α1 = −
N∑
j=1

λj α2 =
N∑
j=1

N∑
k=j+1

λjλk, . . . .

It follows from equation (21a) that

ψ2
1j = 2

R(λj )

K ′(λj )
j = 1, . . . , N (22)

where the prime denotes differentiation with respect toλ. Then from equation (22) we
obtain

N∑
j=1

ψ2jdψ1j =
N∑
j=1

vkduk (23)

which implies that the coordinatesuk, vk are canonically conjugate. From equation (21a)
we find

q = 〈91, 91〉 = 2β1− 2α1 (24a)

r = 〈391, 91〉 − 3
4〈91, 91〉2 = 2β2− 2α2+ 4β1α1− 3β2

1 − α2
1 (24b)

where

β1 = −
N∑
j=1

uj β2 =
N∑
j=1

N∑
k=j+1

ujuk.
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The equalities (13) and (15) indicate that1
2 Tr(M(2)(λ))2 = A2(λ) + B(λ)C(λ) is the

generating function of integrals of motion for the system (17), (18) and (19). Let

A2(λ)+ B(λ)C(λ) = P(λ)

K(λ)
P (λ) =

N+2∑
i=0

Piλ
i (25)

wherePi, i = 0, 1, . . . , N − 1, are the integrals of motion for (17), (18) and (19). By
substituting (20) we find

PN+2 = −1 PN+1 = −α1 PN = −α2

H̃0 = −PN−1− α3 H̃3 = PN−2− α1PN−1− α1α3+ α4 (26a)

H̃4 = PN−3− α1PN−2+ (α2
1 − α2)PN−1+ α2

1α3− α1α4− α2α3+ α5, . . . . (26b)

In order to write the Hamilton–Jacobi equation from (25), we must reinterpret thePi as
integration constants and replacevk by the partial derivatives∂S/∂uk of the generating
function S of the canonical transformation [15]. Insertingλ = uk, from (25) we find

vk =
√
P(uk)

K(uk)
k = 1, . . . , N (27)

which implies that the variables in the Hamilton–Jacobi equation are completely separable.
S can be expressed in the separation formS(u1, . . . , uN) =

∑N
k=1 Sk(uk). By replacing

vk = ∂Sk/∂uk and interpreting thePi as integration constants, equation (25) may be
integrated to give the completely separated solution

S(u1, . . . , uN) =
N∑
k=1

∫ uk

√
P(λ)

K(λ)
dλ. (28)

Obviously, defining the separation variablesuk, k = 1, . . . , N by the zeros ofB(λ) and
vk, k = 1, . . . , N by vk = A(uk) ensures that the separation equations (27) can be deduced
from the generating function of the integrals of motion (25).

The linearizing coordinates are then

Qi ≡ ∂S

∂Pi
= 1

2

N∑
k=1

∫ uk λi√
P(λ)K(λ)

dλ i = 0, 1, . . . , N − 1. (29)

This equality provides a map, called the Abel map, from the old coordinatesuk, k =
1, . . . , N , which live on the Riemann surface, to new coordinatesQk, k = 0, 1, . . . , N − 1
which live on its Jacobi variety. The linear flow induced by (17) is then given by (using
equation (26a))

Qi = ci + ∂H̃0

∂Pi
x = ci − xδi,N−1 i = 0, 1, . . . , N − 1. (30)

The linear flow induced by (18) is of the form (using equation (26a))

Qi = c̄i + ∂H̃3

∂Pi
t3 = c̄i + [δi,N−2− α1δi,N−1]t3 i = 0, 1, . . . , N − 1. (31)

Combining equations (29), (30) and (31) gives rise to the Jacobi inversion problem for the
soliton equation (7) withn = 3:

1

2

N∑
k=1

∫ uk λi√
P(λ)K(λ)

dλ = ci − δi,N−1(x + α1t3)+ δi,N−2t3 i = 0, 1, . . . , N − 1.

(32)
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The linear flow induced by (19) is given by (using equation (26b))

Qi = c̄i + ∂H̃4

∂Pi
t4 = c̄i + [δi,N−3− α1δi,N−2+ (α2

1 − α2)δi,N−1]t4 i = 0, 1, . . . , N − 1.

(33)

Equation (29), together with equations (30) and (33), leads to the Jacobi inversion problem
for the soliton equation (7) withn = 4:

1

2

N∑
k=1

∫ uk λi√
P(λ)K(λ)

dλ = ci + [δi,N−3− α1δi,N−2]t4− [x − (α2
1 − α2)t4]δi,N−1

i = 0, 1, . . . , N − 1. (34)

By using standard Jacobi inversion techniques [16], the solution(q, r) of the soliton
equation (7), which are the symmetric functions ofuk, k = 1, . . . , N defined by (24),
can be given an explicit form in terms of Riemann theta functions.

The method presented above can be applied to all factorizations of (11) and (12) for
equations in the JM hierarchy and for other soliton hierarchies.
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